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Priority Queues & Heaps 

Chapter 8 
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The Priority Queue Class 
Ø  Based on priority heap 
Ø  Elements are prioritized based either on 

q  natural order 
q  a comparator, passed to the constructor. 

Ø  Provides an iterator 
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Priority Queue ADT  

Ø  A priority queue stores a collection of entries 
Ø  Each entry is a pair (key, value) 

Ø  Main methods of the Priority Queue ADT 
q  insert(k, x) inserts an entry with key k and value x 

q  removeMin() removes and returns the entry with smallest key 

Ø  Additional methods 
q min() returns, but does not remove, an entry with smallest key 

q  size(), isEmpty() 

Ø  Applications: 
q  Process scheduling 

q  Standby flyers 
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Total Order Relations  

Ø Keys in a priority 
queue can be 
arbitrary objects on 
which an order is 
defined 

Ø Two distinct entries 
in a priority queue 
can have the same 
key 

Ø Mathematical concept 
of total order relation ≤ 
q Reflexive property: 

x ≤ x 

q Antisymmetric property: 
x ≤ y ∧ y ≤ x è x = y 

q Transitive property: 
 x ≤ y ∧ y ≤ z è x ≤ z 
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Entry ADT 

Ø An entry in a priority 
queue is simply a key-
value pair 

Ø Methods: 
q getKey(): returns the key for 

this entry 

q getValue(): returns the 
value for this entry 

Ø As a Java interface: 
/**  

  * Interface for a key-value 

  * pair entry  
 **/ 

public interface  Entry  { 
    public  Object getKey(); 

    public  Object getValue(); 

} 
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Comparator ADT 
Ø A comparator encapsulates the action of comparing two 

objects according to a given total order relation 

Ø A generic priority queue uses an auxiliary comparator 

Ø  The comparator is external to the keys being compared 

Ø When the priority queue needs to compare two keys, it 
uses its comparator 

Ø  The primary method of the Comparator ADT: 
q compare(a, b):  

² Returns an integer i such that  
v  i < 0 if a < b 

v  i = 0 if a = b 

v  i > 0 if a > b 

v an error occurs if a and b cannot be compared. 
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Example Comparator 
/** Comparator for 2D points under the 

standard lexicographic order. */ 
public class  Lexicographic  implements  

Comparator  { 
    int  xa, ya, xb, yb; 
    public int  compare(Object a, Object b)  

throws  ClassCastException  { 
       xa = ((Point2D) a).getX(); 
       ya = ((Point2D) a).getY(); 
       xb = ((Point2D) b).getX(); 
       yb = ((Point2D) b).getY(); 
       if  (xa != xb) 

  return  (xa - xb); 
       else 

  return  (ya - yb); 
   } 
} 

/** Class representing a point in the 
plane with integer coordinates */ 

public class  Point2D  { 
    protected int xc, yc; // coordinates 
    public  Point2D(int  x,  int  y)  { 
       xc = x; 
       yc = y; 
   } 
    public int  getX()  {  

  return  xc;   
    } 
    public int  getY()  {  

  return  yc;   
    } 
} 
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Sequence-based Priority Queue 

Ø  Implementation with an 
unsorted list 

 

Ø Performance: 
q  insert takes O(1) time since 

we can insert the item at 
the beginning or end of the 
sequence 

q removeMin and min take 
O(n) time since we have to 
traverse the entire 
sequence to find the 
smallest key  

Ø  Implementation with a 
sorted list 

 

Ø Performance: 
q  insert takes O(n) time since 

we have to find the right 
place to insert the item 

q removeMin and min take O
(1) time, since the smallest 
key is at the beginning 

4 5 2 3 1 1 2 3 4 5 

Is this tradeoff inevitable? 
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Heaps 

Ø Goal: 
q O(log n) insertion 

q O(log n) removal 

Ø Remember that O(log n) is almost as good as O(1)! 
q e.g., n = 1,000,000,000 à log n ≅ 30 

Ø  There are min heaps and max heaps.  We will assume 
min heaps. 
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Min Heaps  
Ø A min heap is a binary tree storing keys at its nodes and 

satisfying the following properties: 
q Heap-order: for every internal node v other than the root 

² key(v) ≥ key(parent(v)) 

q (Almost) complete binary tree: let h be the height of the heap 
² for i = 0, … , h - 1, there are 2i nodes of depth i 

² at depth h ‒ 1 

v  the internal nodes are to the left of the external nodes 

v Only the rightmost internal node may have a single child 2 

6 5 

7 9 

q  The last node of a heap is the 
rightmost node of depth h 
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Height of a Heap  

Ø  Theorem: A heap storing n keys has height O(log n) 

 Proof: (we apply the complete binary tree property) 
q  Let h be the height of a heap storing n keys 

q  Since there are 2i keys at depth i = 0, … , h - 1 and at least one key 
at depth h, we have n ≥ 1 + 2 + 4 + … + 2h-1  + 1  

q  Thus, n ≥ 2h , i.e., h ≤ log n 

1 

2 

2h-1 

1 

keys 
0 

1 

h-1 

h 

depth 
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Heaps and Priority Queues 

Ø We can use a heap to implement a priority queue 

Ø We store a (key, element) item at each internal node 

Ø We keep track of the position of the last node 

Ø  For simplicity, we will typically show only the keys in the 
pictures 

(2, Sue) 

(6, Mark) (5, Pat) 

(9, Jeff) (7, Anna) 
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Insertion into a Heap  

Ø Method insert of the 
priority queue ADT involves 
inserting a new entry with 
key k into the heap 

Ø  The insertion algorithm 
consists of two steps 
q Store the new entry at the 

next available location 

q Restore the heap-order 
property  

2 

6 5 

7 9 

new node 

2 

6 5 

7 9 1 

z 

z 
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Upheap 

Ø  After the insertion of a new key k, the heap-order property may be 
violated 

Ø  Algorithm upheap restores the heap-order property by swapping k 
along an upward path from the insertion node 

Ø  Upheap terminates when the key k reaches the root or a node 
whose parent has a key smaller than or equal to k  

Ø  Since a heap has height O(log n), upheap runs in O(log n) time 

2 

1 5 

7 9 6 

1 

2 5 

7 9 6 
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Removal from a Heap  
Ø Method removeMin of the 

priority queue ADT 
corresponds to the removal of 
the root key from the heap 

Ø  The removal algorithm 
consists of three steps 
q Replace the root key with the 

key of the last node w 

q Remove w  
q Restore the heap-order property  

2 

6 5 

7 9 

last node 

w 

7 

6 5 

9 
w 

new last node 
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Downheap 
Ø  After replacing the root key with the key k of the last node, the 

heap-order property may be violated 

Ø  Algorithm downheap restores the heap-order property by 
swapping key k along a downward path from the root 

Ø  Note that there are, in general, many possible downward paths – 
which one do we choose? 

7 

6 5 

9 

w 

? ? 
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Downheap 
Ø  We select the downward path through the minimum-key nodes. 

Ø  Downheap terminates when key k reaches a leaf or a node whose 
children have keys greater than or equal to k  

Ø  Since a heap has height O(log n), downheap runs in O(log n) time 

7 

6 5 

9 
w 

5 

6 7 

9 
w 
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Array-based Heap Implementation  
Ø  We can represent a heap with n keys 

by means of an array of length n + 1 

Ø  Links between nodes are not explicitly 
stored 

Ø  The cell at rank 0 is not used 

Ø  The root is stored at rank 1. 
Ø  For the node at rank i 

q  the left child is at rank 2i 
q  the right child is at rank 2i + 1 

q  the parent is at rank floor(i/2) 

q  if 2i + 1 > n, the node has no right child 

q  if 2i > n, the node is a leaf 

2 

6 5 

7 9 

2 5 6 9 7 

1 2 3 4 5 0 
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Merging Two Heaps 

Ø We are given two 
heaps and a new key k 

Ø We create a new heap 
with the root node 
storing k and with the 
two heaps as subtrees 

Ø We perform downheap 
to restore the heap-
order property  

7 

3 

5 8 

2 

6 4 

3 

5 8 

2 

6 4 

2 

3 

5 8 

4 

6 7 
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Ø We can construct a heap 
storing n keys using a 
bottom-up construction with 
log n phases 

Ø  In phase i, pairs of heaps 
with 2i -1 keys are merged 
into heaps with 2i+1-1 keys 

Bottom-up Heap Construction  

2i -1 2i -1 

2i+1-1 
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Example 

15 16 12 4 7 6 20 23 

25 

15 16 

5 

12 4 

11 

7 6 

27 

20 23 
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Example (contd.) 

25 

15 16 

5 

12 4 

11 

9 6 

27 

20 23 

15 

25 16 

4 

12 5 

6 

9 11 

20 

27 23 
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Example (contd.) 

7 

15 

25 16 

4 

12 5 

8 

6 

9 11 

20 

27 23 

4 

15 

25 16 

5 

12 7 

6 

8 

9 11 

20 

27 23 
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Example (end) 
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Analysis 
Ø  We visualize the worst-case time of a downheap with a proxy path that 

goes first right and then repeatedly goes left until the bottom of the 
heap (this path may differ from the actual downheap path) 

Ø  Since each node is traversed by at most two proxy paths, the total 
number of nodes of the proxy paths is O(n)  

Ø  Thus, bottom-up heap construction runs in O(n) time  

Ø  Bottom-up heap construction is faster than n successive insertions 
(running time ?). 
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Bottom-Up Heap Construction 

Ø Uses downHeap to reorganize the tree from bottom to 
top to make it a heap. 

Ø Can be written concisely in either recursive or iterative 
form. 
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Iterative MakeHeap 

   

MakeHeap(A,n)
<pre-cond>:A[1…n] is a balanced binary tree
<post-cond>:A[1…n] is a heap
for i ! n / 2"

#
$
%  downto 1

< LI >: All subtrees rooted at i + 1…n are heaps
DownHeap(A, i,n)
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Recursive MakeHeap 
Get help from friends 
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MakeHeap(A, i,n)
<pre-cond>:A[i…n] is a balanced binary tree
<post-cond>:The subtree rooted at i  is a heap
if i ! n / 4"

#
$
%  then

MakeHeap(A,LEFT (i),n)
MakeHeap(A,RIGHT (i),n)

Downheap(A, i,n)

Recursive MakeHeap 

T(n) = 2T(n/2) + log(n) 

Running time: 

= O(n) 
i 

n 

p/2  is  of arentn n⎢ ⎥⎣ ⎦

grandp/4  is  ot f arenn n⎢ ⎥⎣ ⎦

Invoke as MakeHeap (A, 1, n) 
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Iterative  vs Recursive MakeHeap 

Ø Recursive and Iterative MakeHeap do essentially the 
same thing:  Heapify from bottom to top. 

Ø Difference: 
q Recursive is “depth-first” 

q  Iterative is “breadth-first” 
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Adaptable Priority 
Queues 

3 a 

5 g 4 e 
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Recall the Entry and Priority Queue ADTs  
Ø An entry stores a (key, 

value) pair within a data 
structure 

Ø Methods of the entry 
ADT: 
q getKey(): returns the key 

associated with this 
entry 

q getValue(): returns the 
value paired with the key 
associated with this 
entry 

Ø Priority Queue ADT: 
q insert(k, x) 

inserts an entry with 
key k and value x 

q removeMin() 
removes and returns 
the entry with 
smallest key 

q min() 
returns, but does not 
remove, an entry 
with smallest key 

q size(), isEmpty() 
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Motivating Example 

Ø  Suppose we have an online trading system where orders to 
purchase and sell a given stock are stored in two priority queues 
(one for sell orders and one for buy orders) as (p,s) entries: 
q  The key, p, of an order is the price 

q  The value, s, for an entry is the number of shares 

q  A buy order (p,s) is executed when a sell order (p’,s’) with price 
p’<p is added (the execution is complete if s’>s) 

q  A sell order (p,s) is executed when a buy order (p’,s’) with price 
p’>p is added (the execution is complete if s’>s) 

Ø  What if someone wishes to cancel their order before it 
executes? 

Ø  What if someone wishes to update the price or number of 
shares for their order? 
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Additional Methods of the Adaptable Priority Queue ADT  
Ø  remove(e): Remove from P and return entry e.   

Ø  replaceKey(e,k): Replace with k and return the old key; 
an error condition occurs if k is invalid (that is, k cannot 
be compared with other keys).   

Ø  replaceValue(e,x): Replace with x and return the old 
value.   
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Example 
Operation 	

 	

 	

Output	

 	

P 	

	


insert(5,A)    e1 	

 	

(5,A)   
insert(3,B)    e2 	

 	

(3,B),(5,A)   
insert(7,C)    e3 	

 	

(3,B),(5,A),(7,C) 
min()     e2 	

 	

(3,B),(5,A),(7,C) 
key(e2)    3 	

 	

(3,B),(5,A),(7,C) 
remove(e1)    e1 	

 	

(3,B),(7,C) 
replaceKey(e2,9)   3 	

 	

(7,C),(9,B)   
replaceValue(e3,D)   C 	

 	

(7,D),(9,B)   
remove(e2)    e2 	

 	

(7,D)   
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Locating Entries 

Ø  In order to implement the operations remove(e), 
replaceKey(e,k), and replaceValue(e,x), we need fast 
ways of locating an entry e in a priority queue. 

Ø We can always just search the entire data structure to 
find an entry e, but there are better ways for locating 
entries. 
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Location-Aware Entries 

Ø A location-aware entry identifies and tracks the 
location of its (key, value) object within a data 
structure 
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List Implementation 

Ø A location-aware list entry is an object storing 
q key 
q value 
q position (or rank) of the item in the list 

Ø  In turn, the position (or array cell) stores the entry 
Ø Back pointers (or ranks) are updated during swaps 

trailer header nodes/positions 

entries 

2 c 4 a 5 d 8 b 
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Heap Implementation 
Ø  A location-aware heap 

entry is an object storing 
q  key 

q  value 

q  position of the entry in the 
underlying heap 

Ø  In turn, each heap position 
stores an entry 

Ø  Back pointers are updated 
during entry swaps 

4 a 

2 d 

6 b 

8 g 5 e 9 c 
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Performance 
Ø  Times better than those achievable without location-aware 

entries are highlighted in red: 
Method   Unsorted List  Sorted List  Heap   

size, isEmpty   O(1)   O(1)   O(1)   

insert    O(1)   O(n)   O(log n) 

min    O(n)   O(1)   O(1)   

removeMin   O(n)   O(1)   O(log n) 

remove   O(1)   O(1)   O(log n) 

replaceKey   O(1)   O(n)   O(log n) 

replaceValue   O(1)   O(1)   O(1) 


