Priority Queues & Heaps

Chapter 8

The Java Collections Framework (Ordered Data Types)

The **Priority Queue** Class

- Based on priority heap
- Elements are prioritized based either on
 - natural order
 - □ a **comparator**, passed to the constructor.
- Provides an iterator

Priority Queue ADT

- A priority queue stores a collection of entries
- Each entry is a pair (key, value)
- Main methods of the Priority Queue ADT
 - ☐ insert(k, x) inserts an entry with key k and value x
 - □ removeMin() removes and returns the entry with smallest key
- Additional methods
 - ☐ min() returns, but does not remove, an entry with smallest key
 - □ size(), isEmpty()
- Applications:
 - □ Process scheduling
 - ☐ Standby flyers

Total Order Relations

- Keys in a priority queue can be arbitrary objects on which an order is defined
- Two distinct entries in a priority queue can have the same key

- ➤ Mathematical concept of total order relation ≤
 - □ Reflexive property:

$$x \le x$$

□ Antisymmetric property:

$$x \le y \land y \le x \rightarrow x = y$$

☐ Transitive property:

$$x \le y \land y \le z \Rightarrow x \le z$$

Entry ADT

- An entry in a priority queue is simply a keyvalue pair
- Methods:
 - □ **getKey**(): returns the key for this entry
 - ☐ **getValue**(): returns the value for this entry

```
As a Java interface:
   /**
     * Interface for a key-value
     * pair entry
    **/
   public interface Entry {
      public Object getKey();
      public Object getValue();
```

Comparator ADT

- A comparator encapsulates the action of comparing two objects according to a given total order relation
- > A generic priority queue uses an auxiliary comparator
- The comparator is external to the keys being compared
- When the priority queue needs to compare two keys, it uses its comparator
- The primary method of the Comparator ADT:
 - □ compare(a, b):
 - ♦ Returns an integer i such that
 - i < 0 if a < b
 - i = 0 if a = b
 - i > 0 if a > b
 - an error occurs if a and b cannot be compared.

- 7 -

Example Comparator

```
/** Comparator for 2D points under the
    standard lexicographic order. */
public class Lexicographic implements
    Comparator {
  int xa, ya, xb, yb;
  public int compare(Object a, Object b)
throws ClassCastException {
    xa = ((Point2D) a).getX();
    ya = ((Point2D) a).getY();
    xb = ((Point2D) b).getX();
    yb = ((Point2D) b).getY();
    if (xa != xb)
           return (xa - xb);
    else
           return (ya - yb);
```

```
/** Class representing a point in the
    plane with integer coordinates */
public class Point2D
  protected int xc, yc; // coordinates
  public Point2D(int x, int y) {
    xc = x;
    yc = y;
  public int getX() {
          return xc;
  public int getY() {
          return yc;
```

Sequence-based Priority Queue

Implementation with an unsorted list

- Performance:
 - □ **insert** takes *O*(1) time since we can insert the item at the beginning or end of the sequence
 - □ removeMin and min take
 O(n) time since we have to traverse the entire sequence to find the smallest key

Implementation with a sorted list

- > Performance:
 - \square insert takes O(n) time since we have to find the right place to insert the item
 - ☐ removeMin and min take *O*(1) time, since the smallest key is at the beginning

Is this tradeoff inevitable?

Heaps

- ➤ Goal:
 - □ O(log n) insertion
 - □ O(log n) removal
- Remember that O(log n) is almost as good as O(1)!
 - \Box e.g., n = 1,000,000,000 → log n \cong 30
- There are min heaps and max heaps. We will assume min heaps.

Min Heaps

- ➤ A min heap is a binary tree storing keys at its nodes and satisfying the following properties:
 - ☐ Heap-order: for every internal node v other than the root
 - $\Leftrightarrow key(v) \ge key(parent(v))$
 - ☐ (Almost) complete binary tree: let h be the height of the heap
 - \diamond for i = 0, ..., h-1, there are 2^i nodes of depth i
 - \Rightarrow at depth h 1
 - the internal nodes are to the left of the external nodes
 - Only the rightmost internal node may have a single child

The last node of a heap is the rightmost node of depth *h*

Height of a Heap

ightharpoonup Theorem: A heap storing n keys has height $O(\log n)$

Proof: (we apply the complete binary tree property)

- \square Let h be the height of a heap storing n keys
- □ Since there are 2^i keys at depth i = 0, ..., h-1 and at least one key at depth h, we have $n \ge 1 + 2 + 4 + ... + 2^{h-1} + 1$
- □ Thus, $n \ge 2^h$, i.e., $h \le \log n$

Heaps and Priority Queues

- We can use a heap to implement a priority queue
- We store a (key, element) item at each internal node
- We keep track of the position of the last node
- For simplicity, we will typically show only the keys in the pictures

Insertion into a Heap

- Method insert of the priority queue ADT involves inserting a new entry with key k into the heap
- The insertion algorithm consists of two steps
 - ☐ Store the new entry at the next available location
 - Restore the heap-order property

Upheap

- \triangleright After the insertion of a new key k, the heap-order property may be violated
- Algorithm **upheap** restores the heap-order property by swapping *k* along an upward path from the insertion node
- \blacktriangleright **Upheap** terminates when the key k reaches the root or a node whose parent has a key smaller than or equal to k
- \triangleright Since a heap has height $O(\log n)$, upheap runs in $O(\log n)$ time

Removal from a Heap

- 16 -

- Method removeMin of the priority queue ADT corresponds to the removal of the root key from the heap
- The removal algorithm consists of three steps
 - □ Replace the root key with the key of the last node w
 - ☐ Remove w
 - ☐ Restore the heap-order property

Downheap

- After replacing the root key with the key k of the last node, the heap-order property may be violated
- \triangleright Algorithm downheap restores the heap-order property by swapping key k along a downward path from the root
- Note that there are, in general, many possible downward paths which one do we choose?

Downheap

- We select the downward path through the minimum-key nodes.
- \blacktriangleright Downheap terminates when key k reaches a leaf or a node whose children have keys greater than or equal to k
- \triangleright Since a heap has height $O(\log n)$, downheap runs in $O(\log n)$ time

Array-based Heap Implementation

- We can represent a heap with n keys by means of an array of length n + 1
- Links between nodes are not explicitly stored
- The cell at rank 0 is not used
- The root is stored at rank 1.
- For the node at rank i
 - □ the left child is at rank 2*i*
 - \Box the right child is at rank 2i + 1
 - ☐ the parent is at rank **floor**(i/2)
 - ☐ if 2i + 1 > n, the node has no right child
 - ☐ if 2i > n, the node is a leaf

Merging Two Heaps

- We are given two heaps and a new key k
- We create a new heap with the root node storing k and with the two heaps as subtrees
- We perform downheap to restore the heaporder property

Bottom-up Heap Construction

- We can construct a heap storing n keys using a bottom-up construction with log n phases
- ▶ In phase i, pairs of heaps with 2i-1 keys are merged into heaps with 2i+1-1 keys

Example

Example (contd.)

Example (contd.)

Example (end)

Analysis

- We visualize the worst-case time of a downheap with a proxy path that goes first right and then repeatedly goes left until the bottom of the heap (this path may differ from the actual downheap path)
- Since each node is traversed by at most two proxy paths, the total number of nodes of the proxy paths is O(n)
- \triangleright Thus, bottom-up heap construction runs in O(n) time
- Bottom-up heap construction is faster than n successive insertions (running time?).

Bottom-Up Heap Construction

- Uses downHeap to reorganize the tree from bottom to top to make it a heap.
- Can be written concisely in either recursive or iterative form.

Iterative MakeHeap

```
MakeHeap(A, n)
```


Recursive MakeHeap

Get help from friends

Recursive MakeHeap

Iterative vs Recursive MakeHeap

- Recursive and Iterative MakeHeap do essentially the same thing: Heapify from bottom to top.
- > Difference:
 - ☐ Recursive is "depth-first"
 - ☐ Iterative is "breadth-first"

Adaptable Priority Queues

Recall the Entry and Priority Queue ADTs

- An entry stores a (key, value) pair within a data structure
- Methods of the entry ADT:
 - □getKey(): returns the key associated with this entry
 - □getValue(): returns the value paired with the key associated with this entry

- Priority Queue ADT:
 - □insert(k, x)
 inserts an entry with
 key k and value x
 - removeMin()
 removes and returns
 the entry with
 smallest key
 - min()
 returns, but does not remove, an entry
 with smallest key
 - □size(), isEmpty()

Motivating Example

- Suppose we have an online trading system where orders to purchase and sell a given stock are stored in two priority queues (one for sell orders and one for buy orders) as (p,s) entries:
 - ☐ The key, p, of an order is the price
 - ☐ The value, s, for an entry is the number of shares
 - A buy order (p,s) is executed when a sell order (p',s') with price p'≤p is added (the execution is complete if s'≥s)
 - A sell order (p,s) is executed when a buy order (p',s') with price p'≥p is added (the execution is complete if s'≥s)
- What if someone wishes to cancel their order before it executes?
- What if someone wishes to update the price or number of shares for their order?

Additional Methods of the Adaptable Priority Queue ADT

- remove(e): Remove from P and return entry e.
- replaceKey(e,k): Replace with k and return the old key; an error condition occurs if k is invalid (that is, k cannot be compared with other keys).
- replaceValue(e,x): Replace with x and return the old value.

Example

Operation	Output	P
insert(5,A)	e_1	(5,A)
insert(3,B)	e_2	(3,B),(5,A)
insert(7,C)	e_3	(3,B),(5,A),(7,C)
min()	e_2	(3,B),(5,A),(7,C)
$key(e_2)$	3	(3,B),(5,A),(7,C)
$remove(e_1)$	e_1	(3,B),(7,C)
replaceKey(e_2 ,9)	3	(7,C),(9,B)
replaceValue(e_3 , D)	\boldsymbol{C}	(7,D),(9,B)
$remove(e_2)$	e_2	(7,D)

Locating Entries

- ➤ In order to implement the operations remove(e), replaceKey(e,k), and replaceValue(e,x), we need fast ways of locating an entry e in a priority queue.
- We can always just search the entire data structure to find an entry e, but there are better ways for locating entries.

Location-Aware Entries

A location-aware entry identifies and tracks the location of its (key, value) object within a data structure

List Implementation

- A location-aware list entry is an object storing
 - □ key
 - □ value
 - position (or rank) of the item in the list
- ➤ In turn, the position (or array cell) stores the entry
- Back pointers (or ranks) are updated during swaps

- 39 -

Prof. J. Elder

Heap Implementation

- A location-aware heap entry is an object storing
 - □ key
 - value
 - position of the entry in the underlying heap
- In turn, each heap position stores an entry
- Back pointers are updated during entry swaps

Performance

➤ Times better than those achievable without location-aware entries are highlighted in red:

Method	Unsorted List	Sorted List	Heap
size, isEmpty	<i>O</i> (1)	<i>O</i> (1)	<i>O</i> (1)
insert	<i>O</i> (1)	O(n)	$O(\log n)$
min	O(n)	<i>O</i> (1)	<i>O</i> (1)
removeMin	O(n)	<i>O</i> (1)	$O(\log n)$
remove	<i>O</i> (1)	<i>O</i> (1)	$O(\log n)$
replaceKey	<i>O</i> (1)	O(n)	$O(\log n)$
replaceValue	<i>O</i> (1)	<i>O</i> (1)	<i>O</i> (1)

