
Last Updated: 12-02-27 3:07 PM
CSE 2011
Prof. J. Elder - 1 -

Priority Queues & Heaps

Chapter 8

Last Updated: 12-02-27 3:07 PM
CSE 2011
Prof. J. Elder - 2 -

Iterable

Collection

Abstract
Collection Queue

List

Abstract
Queue

Priority
Queue Array

List

Abstract
List

Vector

Stack

Linked
List

Abstract
Sequential

List

Interface

Abstract Class

Class

The Java Collections Framework (Ordered Data Types)

Last Updated: 12-02-27 3:07 PM
CSE 2011
Prof. J. Elder - 3 -

The Priority Queue Class
Ø  Based on priority heap
Ø  Elements are prioritized based either on

q  natural order
q  a comparator, passed to the constructor.

Ø  Provides an iterator

Last Updated: 12-02-27 3:07 PM
CSE 2011
Prof. J. Elder - 4 -

Priority Queue ADT

Ø  A priority queue stores a collection of entries
Ø  Each entry is a pair (key, value)

Ø  Main methods of the Priority Queue ADT
q  insert(k, x) inserts an entry with key k and value x

q  removeMin() removes and returns the entry with smallest key

Ø  Additional methods
q min() returns, but does not remove, an entry with smallest key

q  size(), isEmpty()

Ø  Applications:
q  Process scheduling

q  Standby flyers

Last Updated: 12-02-27 3:07 PM
CSE 2011
Prof. J. Elder - 5 -

Total Order Relations

Ø Keys in a priority
queue can be
arbitrary objects on
which an order is
defined

Ø Two distinct entries
in a priority queue
can have the same
key

Ø Mathematical concept
of total order relation ≤
q Reflexive property:

x ≤ x

q Antisymmetric property:
x ≤ y ∧ y ≤ x è x = y

q Transitive property:
 x ≤ y ∧ y ≤ z è x ≤ z

Last Updated: 12-02-27 3:07 PM
CSE 2011
Prof. J. Elder - 6 -

Entry ADT

Ø An entry in a priority
queue is simply a key-
value pair

Ø Methods:
q getKey(): returns the key for

this entry

q getValue(): returns the
value for this entry

Ø As a Java interface:
/**

 * Interface for a key-value

 * pair entry
 **/

public interface Entry {
 public Object getKey();

 public Object getValue();

}

Last Updated: 12-02-27 3:07 PM
CSE 2011
Prof. J. Elder - 7 -

Comparator ADT
Ø A comparator encapsulates the action of comparing two

objects according to a given total order relation

Ø A generic priority queue uses an auxiliary comparator

Ø  The comparator is external to the keys being compared

Ø When the priority queue needs to compare two keys, it
uses its comparator

Ø  The primary method of the Comparator ADT:
q compare(a, b):

² Returns an integer i such that
v  i < 0 if a < b

v  i = 0 if a = b

v  i > 0 if a > b

v an error occurs if a and b cannot be compared.

Last Updated: 12-02-27 3:07 PM
CSE 2011
Prof. J. Elder - 8 -

Example Comparator
/** Comparator for 2D points under the

standard lexicographic order. */
public class Lexicographic implements

Comparator {
 int xa, ya, xb, yb;
 public int compare(Object a, Object b)

throws ClassCastException {
 xa = ((Point2D) a).getX();
 ya = ((Point2D) a).getY();
 xb = ((Point2D) b).getX();
 yb = ((Point2D) b).getY();
 if (xa != xb)

 return (xa - xb);
 else

 return (ya - yb);
 }
}

/** Class representing a point in the
plane with integer coordinates */

public class Point2D {
 protected int xc, yc; // coordinates
 public Point2D(int x, int y) {
 xc = x;
 yc = y;
 }
 public int getX() {

 return xc;
 }
 public int getY() {

 return yc;
 }
}

Last Updated: 12-02-27 3:07 PM
CSE 2011
Prof. J. Elder - 9 -

Sequence-based Priority Queue

Ø  Implementation with an
unsorted list

Ø Performance:
q  insert takes O(1) time since

we can insert the item at
the beginning or end of the
sequence

q removeMin and min take
O(n) time since we have to
traverse the entire
sequence to find the
smallest key

Ø  Implementation with a
sorted list

Ø Performance:
q  insert takes O(n) time since

we have to find the right
place to insert the item

q removeMin and min take O
(1) time, since the smallest
key is at the beginning

4 5 2 3 1 1 2 3 4 5

Is this tradeoff inevitable?

Last Updated: 12-02-27 3:07 PM
CSE 2011
Prof. J. Elder - 10 -

Heaps

Ø Goal:
q O(log n) insertion

q O(log n) removal

Ø Remember that O(log n) is almost as good as O(1)!
q e.g., n = 1,000,000,000 à log n ≅ 30

Ø  There are min heaps and max heaps. We will assume
min heaps.

Last Updated: 12-02-27 3:07 PM
CSE 2011
Prof. J. Elder - 11 -

Min Heaps
Ø A min heap is a binary tree storing keys at its nodes and

satisfying the following properties:
q Heap-order: for every internal node v other than the root

² key(v) ≥ key(parent(v))

q (Almost) complete binary tree: let h be the height of the heap
² for i = 0, … , h - 1, there are 2i nodes of depth i

² at depth h ‒ 1

v  the internal nodes are to the left of the external nodes

v Only the rightmost internal node may have a single child 2

6 5

7 9

q  The last node of a heap is the
rightmost node of depth h

Last Updated: 12-02-27 3:07 PM
CSE 2011
Prof. J. Elder - 12 -

Height of a Heap

Ø  Theorem: A heap storing n keys has height O(log n)

 Proof: (we apply the complete binary tree property)
q  Let h be the height of a heap storing n keys

q  Since there are 2i keys at depth i = 0, … , h - 1 and at least one key
at depth h, we have n ≥ 1 + 2 + 4 + … + 2h-1 + 1

q  Thus, n ≥ 2h , i.e., h ≤ log n

1

2

2h-1

1

keys
0

1

h-1

h

depth

Last Updated: 12-02-27 3:07 PM
CSE 2011
Prof. J. Elder - 13 -

Heaps and Priority Queues

Ø We can use a heap to implement a priority queue

Ø We store a (key, element) item at each internal node

Ø We keep track of the position of the last node

Ø  For simplicity, we will typically show only the keys in the
pictures

(2, Sue)

(6, Mark) (5, Pat)

(9, Jeff) (7, Anna)

Last Updated: 12-02-27 3:07 PM
CSE 2011
Prof. J. Elder - 14 -

Insertion into a Heap

Ø Method insert of the
priority queue ADT involves
inserting a new entry with
key k into the heap

Ø  The insertion algorithm
consists of two steps
q Store the new entry at the

next available location

q Restore the heap-order
property

2

6 5

7 9

new node

2

6 5

7 9 1

z

z

Last Updated: 12-02-27 3:07 PM
CSE 2011
Prof. J. Elder - 15 -

Upheap

Ø  After the insertion of a new key k, the heap-order property may be
violated

Ø  Algorithm upheap restores the heap-order property by swapping k
along an upward path from the insertion node

Ø  Upheap terminates when the key k reaches the root or a node
whose parent has a key smaller than or equal to k

Ø  Since a heap has height O(log n), upheap runs in O(log n) time

2

1 5

7 9 6

1

2 5

7 9 6

Last Updated: 12-02-27 3:07 PM
CSE 2011
Prof. J. Elder - 16 -

Removal from a Heap
Ø Method removeMin of the

priority queue ADT
corresponds to the removal of
the root key from the heap

Ø  The removal algorithm
consists of three steps
q Replace the root key with the

key of the last node w

q Remove w
q Restore the heap-order property

2

6 5

7 9

last node

w

7

6 5

9
w

new last node

Last Updated: 12-02-27 3:07 PM
CSE 2011
Prof. J. Elder - 17 -

Downheap
Ø  After replacing the root key with the key k of the last node, the

heap-order property may be violated

Ø  Algorithm downheap restores the heap-order property by
swapping key k along a downward path from the root

Ø  Note that there are, in general, many possible downward paths –
which one do we choose?

7

6 5

9

w

? ?

Last Updated: 12-02-27 3:07 PM
CSE 2011
Prof. J. Elder - 18 -

Downheap
Ø  We select the downward path through the minimum-key nodes.

Ø  Downheap terminates when key k reaches a leaf or a node whose
children have keys greater than or equal to k

Ø  Since a heap has height O(log n), downheap runs in O(log n) time

7

6 5

9
w

5

6 7

9
w

Last Updated: 12-02-27 3:07 PM
CSE 2011
Prof. J. Elder - 19 -

Array-based Heap Implementation
Ø  We can represent a heap with n keys

by means of an array of length n + 1

Ø  Links between nodes are not explicitly
stored

Ø  The cell at rank 0 is not used

Ø  The root is stored at rank 1.
Ø  For the node at rank i

q  the left child is at rank 2i
q  the right child is at rank 2i + 1

q  the parent is at rank floor(i/2)

q  if 2i + 1 > n, the node has no right child

q  if 2i > n, the node is a leaf

2

6 5

7 9

2 5 6 9 7

1 2 3 4 5 0

Last Updated: 12-02-27 3:07 PM
CSE 2011
Prof. J. Elder - 20 -

Merging Two Heaps

Ø We are given two
heaps and a new key k

Ø We create a new heap
with the root node
storing k and with the
two heaps as subtrees

Ø We perform downheap
to restore the heap-
order property

7

3

5 8

2

6 4

3

5 8

2

6 4

2

3

5 8

4

6 7

Last Updated: 12-02-27 3:07 PM
CSE 2011
Prof. J. Elder - 21 -

Ø We can construct a heap
storing n keys using a
bottom-up construction with
log n phases

Ø  In phase i, pairs of heaps
with 2i -1 keys are merged
into heaps with 2i+1-1 keys

Bottom-up Heap Construction

2i -1 2i -1

2i+1-1

Last Updated: 12-02-27 3:07 PM
CSE 2011
Prof. J. Elder - 22 -

Example

15 16 12 4 7 6 20 23

25

15 16

5

12 4

11

7 6

27

20 23

Last Updated: 12-02-27 3:07 PM
CSE 2011
Prof. J. Elder - 23 -

Example (contd.)

25

15 16

5

12 4

11

9 6

27

20 23

15

25 16

4

12 5

6

9 11

20

27 23

Last Updated: 12-02-27 3:07 PM
CSE 2011
Prof. J. Elder - 24 -

Example (contd.)

7

15

25 16

4

12 5

8

6

9 11

20

27 23

4

15

25 16

5

12 7

6

8

9 11

20

27 23

Last Updated: 12-02-27 3:07 PM
CSE 2011
Prof. J. Elder - 25 -

Example (end)

4

15

25 16

5

12 7

10

6

8

9 11

23

20 27

5

15

25 16

7

12 10

4

6

8

9 11

20

27 23

Last Updated: 12-02-27 3:07 PM
CSE 2011
Prof. J. Elder - 26 -

Analysis
Ø  We visualize the worst-case time of a downheap with a proxy path that

goes first right and then repeatedly goes left until the bottom of the
heap (this path may differ from the actual downheap path)

Ø  Since each node is traversed by at most two proxy paths, the total
number of nodes of the proxy paths is O(n)

Ø  Thus, bottom-up heap construction runs in O(n) time

Ø  Bottom-up heap construction is faster than n successive insertions
(running time ?).

Last Updated: 12-02-27 3:07 PM
CSE 2011
Prof. J. Elder - 27 -

Bottom-Up Heap Construction

Ø Uses downHeap to reorganize the tree from bottom to
top to make it a heap.

Ø Can be written concisely in either recursive or iterative
form.

Last Updated: 12-02-27 3:07 PM
CSE 2011
Prof. J. Elder - 28 -

Iterative MakeHeap

MakeHeap(A,n)
<pre-cond>:A[1…n] is a balanced binary tree
<post-cond>:A[1…n] is a heap
for i ! n / 2"

#
$
% downto 1

< LI >: All subtrees rooted at i + 1…n are heaps
DownHeap(A, i,n)

Last Updated: 12-02-27 3:07 PM
CSE 2011
Prof. J. Elder - 29 -

Recursive MakeHeap
Get help from friends

Last Updated: 12-02-27 3:07 PM
CSE 2011
Prof. J. Elder - 30 -

MakeHeap(A, i,n)
<pre-cond>:A[i…n] is a balanced binary tree
<post-cond>:The subtree rooted at i is a heap
if i ! n / 4"

#
$
% then

MakeHeap(A,LEFT (i),n)
MakeHeap(A,RIGHT (i),n)

Downheap(A, i,n)

Recursive MakeHeap

T(n) = 2T(n/2) + log(n)

Running time:

= O(n)
i

n

p/2 is of arentn n⎢ ⎥⎣ ⎦

grandp/4 is ot f arenn n⎢ ⎥⎣ ⎦

Invoke as MakeHeap (A, 1, n)

Last Updated: 12-02-27 3:07 PM
CSE 2011
Prof. J. Elder - 31 -

Iterative vs Recursive MakeHeap

Ø Recursive and Iterative MakeHeap do essentially the
same thing: Heapify from bottom to top.

Ø Difference:
q Recursive is “depth-first”

q  Iterative is “breadth-first”

Last Updated: 12-02-27 3:07 PM
CSE 2011
Prof. J. Elder - 32 -

Adaptable Priority
Queues

3 a

5 g 4 e

Last Updated: 12-02-27 3:07 PM
CSE 2011
Prof. J. Elder - 33 -

Recall the Entry and Priority Queue ADTs
Ø An entry stores a (key,

value) pair within a data
structure

Ø Methods of the entry
ADT:
q getKey(): returns the key

associated with this
entry

q getValue(): returns the
value paired with the key
associated with this
entry

Ø Priority Queue ADT:
q insert(k, x)

inserts an entry with
key k and value x

q removeMin()
removes and returns
the entry with
smallest key

q min()
returns, but does not
remove, an entry
with smallest key

q size(), isEmpty()

Last Updated: 12-02-27 3:07 PM
CSE 2011
Prof. J. Elder - 34 -

Motivating Example

Ø  Suppose we have an online trading system where orders to
purchase and sell a given stock are stored in two priority queues
(one for sell orders and one for buy orders) as (p,s) entries:
q  The key, p, of an order is the price

q  The value, s, for an entry is the number of shares

q  A buy order (p,s) is executed when a sell order (p’,s’) with price
p’<p is added (the execution is complete if s’>s)

q  A sell order (p,s) is executed when a buy order (p’,s’) with price
p’>p is added (the execution is complete if s’>s)

Ø  What if someone wishes to cancel their order before it
executes?

Ø  What if someone wishes to update the price or number of
shares for their order?

Last Updated: 12-02-27 3:07 PM
CSE 2011
Prof. J. Elder - 35 -

Additional Methods of the Adaptable Priority Queue ADT
Ø  remove(e): Remove from P and return entry e.

Ø  replaceKey(e,k): Replace with k and return the old key;
an error condition occurs if k is invalid (that is, k cannot
be compared with other keys).

Ø  replaceValue(e,x): Replace with x and return the old
value.

Last Updated: 12-02-27 3:07 PM
CSE 2011
Prof. J. Elder - 36 -

Example
Operation 	

 	

 	

Output	

 	

P 	

	

insert(5,A) e1 	

 	

(5,A)
insert(3,B) e2 	

 	

(3,B),(5,A)
insert(7,C) e3 	

 	

(3,B),(5,A),(7,C)
min() e2 	

 	

(3,B),(5,A),(7,C)
key(e2) 3 	

 	

(3,B),(5,A),(7,C)
remove(e1) e1 	

 	

(3,B),(7,C)
replaceKey(e2,9) 3 	

 	

(7,C),(9,B)
replaceValue(e3,D) C 	

 	

(7,D),(9,B)
remove(e2) e2 	

 	

(7,D)

Last Updated: 12-02-27 3:07 PM
CSE 2011
Prof. J. Elder - 37 -

Locating Entries

Ø  In order to implement the operations remove(e),
replaceKey(e,k), and replaceValue(e,x), we need fast
ways of locating an entry e in a priority queue.

Ø We can always just search the entire data structure to
find an entry e, but there are better ways for locating
entries.

Last Updated: 12-02-27 3:07 PM
CSE 2011
Prof. J. Elder - 38 -

Location-Aware Entries

Ø A location-aware entry identifies and tracks the
location of its (key, value) object within a data
structure

Last Updated: 12-02-27 3:07 PM
CSE 2011
Prof. J. Elder - 39 -

List Implementation

Ø A location-aware list entry is an object storing
q key
q value
q position (or rank) of the item in the list

Ø  In turn, the position (or array cell) stores the entry
Ø Back pointers (or ranks) are updated during swaps

trailer header nodes/positions

entries

2 c 4 a 5 d 8 b

Last Updated: 12-02-27 3:07 PM
CSE 2011
Prof. J. Elder - 40 -

Heap Implementation
Ø  A location-aware heap

entry is an object storing
q  key

q  value

q  position of the entry in the
underlying heap

Ø  In turn, each heap position
stores an entry

Ø  Back pointers are updated
during entry swaps

4 a

2 d

6 b

8 g 5 e 9 c

Last Updated: 12-02-27 3:07 PM
CSE 2011
Prof. J. Elder - 41 -

Performance
Ø  Times better than those achievable without location-aware

entries are highlighted in red:
Method Unsorted List Sorted List Heap

size, isEmpty O(1) O(1) O(1)

insert O(1) O(n) O(log n)

min O(n) O(1) O(1)

removeMin O(n) O(1) O(log n)

remove O(1) O(1) O(log n)

replaceKey O(1) O(n) O(log n)

replaceValue O(1) O(1) O(1)

